3.510 \(\int \frac {\tan ^5(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx\)

Optimal. Leaf size=134 \[ \frac {\left (8 a^2+8 a b+3 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b \sin ^2(e+f x)}}{\sqrt {a+b}}\right )}{8 f (a+b)^{5/2}}+\frac {\sec ^4(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{4 f (a+b)}-\frac {(8 a+5 b) \sec ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{8 f (a+b)^2} \]

[Out]

1/8*(8*a^2+8*a*b+3*b^2)*arctanh((a+b*sin(f*x+e)^2)^(1/2)/(a+b)^(1/2))/(a+b)^(5/2)/f-1/8*(8*a+5*b)*sec(f*x+e)^2
*(a+b*sin(f*x+e)^2)^(1/2)/(a+b)^2/f+1/4*sec(f*x+e)^4*(a+b*sin(f*x+e)^2)^(1/2)/(a+b)/f

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 134, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3194, 89, 78, 63, 208} \[ \frac {\left (8 a^2+8 a b+3 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b \sin ^2(e+f x)}}{\sqrt {a+b}}\right )}{8 f (a+b)^{5/2}}+\frac {\sec ^4(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{4 f (a+b)}-\frac {(8 a+5 b) \sec ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{8 f (a+b)^2} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^5/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

((8*a^2 + 8*a*b + 3*b^2)*ArcTanh[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[a + b]])/(8*(a + b)^(5/2)*f) - ((8*a + 5*b)*S
ec[e + f*x]^2*Sqrt[a + b*Sin[e + f*x]^2])/(8*(a + b)^2*f) + (Sec[e + f*x]^4*Sqrt[a + b*Sin[e + f*x]^2])/(4*(a
+ b)*f)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 89

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c - a*
d)^2*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d^2*(d*e - c*f)*(n + 1)), x] - Dist[1/(d^2*(d*e - c*f)*(n + 1)), In
t[(c + d*x)^(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*(p + 1)) - 2*a*b*d*(d*e*
(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ
[n, -1] || (EqQ[n + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3194

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[(x^((m - 1)/2)*(a + b*ff*x)^p)/(1 - ff*x)^((
m + 1)/2), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {\tan ^5(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^2}{(1-x)^3 \sqrt {a+b x}} \, dx,x,\sin ^2(e+f x)\right )}{2 f}\\ &=\frac {\sec ^4(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{4 (a+b) f}-\frac {\operatorname {Subst}\left (\int \frac {\frac {1}{2} (4 a+b)+2 (a+b) x}{(1-x)^2 \sqrt {a+b x}} \, dx,x,\sin ^2(e+f x)\right )}{4 (a+b) f}\\ &=-\frac {(8 a+5 b) \sec ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{8 (a+b)^2 f}+\frac {\sec ^4(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{4 (a+b) f}+\frac {\left (8 a^2+8 a b+3 b^2\right ) \operatorname {Subst}\left (\int \frac {1}{(1-x) \sqrt {a+b x}} \, dx,x,\sin ^2(e+f x)\right )}{16 (a+b)^2 f}\\ &=-\frac {(8 a+5 b) \sec ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{8 (a+b)^2 f}+\frac {\sec ^4(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{4 (a+b) f}+\frac {\left (8 a^2+8 a b+3 b^2\right ) \operatorname {Subst}\left (\int \frac {1}{1+\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sin ^2(e+f x)}\right )}{8 b (a+b)^2 f}\\ &=\frac {\left (8 a^2+8 a b+3 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b \sin ^2(e+f x)}}{\sqrt {a+b}}\right )}{8 (a+b)^{5/2} f}-\frac {(8 a+5 b) \sec ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{8 (a+b)^2 f}+\frac {\sec ^4(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{4 (a+b) f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.47, size = 108, normalized size = 0.81 \[ \frac {\left (8 a^2+8 a b+3 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b \sin ^2(e+f x)}}{\sqrt {a+b}}\right )+\sqrt {a+b} \sec ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \left (2 (a+b) \sec ^2(e+f x)-8 a-5 b\right )}{8 f (a+b)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^5/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

((8*a^2 + 8*a*b + 3*b^2)*ArcTanh[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[a + b]] + Sqrt[a + b]*Sec[e + f*x]^2*(-8*a -
5*b + 2*(a + b)*Sec[e + f*x]^2)*Sqrt[a + b*Sin[e + f*x]^2])/(8*(a + b)^(5/2)*f)

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 328, normalized size = 2.45 \[ \left [\frac {{\left (8 \, a^{2} + 8 \, a b + 3 \, b^{2}\right )} \sqrt {a + b} \cos \left (f x + e\right )^{4} \log \left (\frac {b \cos \left (f x + e\right )^{2} - 2 \, \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \sqrt {a + b} - 2 \, a - 2 \, b}{\cos \left (f x + e\right )^{2}}\right ) - 2 \, {\left ({\left (8 \, a^{2} + 13 \, a b + 5 \, b^{2}\right )} \cos \left (f x + e\right )^{2} - 2 \, a^{2} - 4 \, a b - 2 \, b^{2}\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b}}{16 \, {\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} f \cos \left (f x + e\right )^{4}}, -\frac {{\left (8 \, a^{2} + 8 \, a b + 3 \, b^{2}\right )} \sqrt {-a - b} \arctan \left (\frac {\sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \sqrt {-a - b}}{a + b}\right ) \cos \left (f x + e\right )^{4} + {\left ({\left (8 \, a^{2} + 13 \, a b + 5 \, b^{2}\right )} \cos \left (f x + e\right )^{2} - 2 \, a^{2} - 4 \, a b - 2 \, b^{2}\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b}}{8 \, {\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} f \cos \left (f x + e\right )^{4}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^5/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/16*((8*a^2 + 8*a*b + 3*b^2)*sqrt(a + b)*cos(f*x + e)^4*log((b*cos(f*x + e)^2 - 2*sqrt(-b*cos(f*x + e)^2 + a
 + b)*sqrt(a + b) - 2*a - 2*b)/cos(f*x + e)^2) - 2*((8*a^2 + 13*a*b + 5*b^2)*cos(f*x + e)^2 - 2*a^2 - 4*a*b -
2*b^2)*sqrt(-b*cos(f*x + e)^2 + a + b))/((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*f*cos(f*x + e)^4), -1/8*((8*a^2 + 8*a
*b + 3*b^2)*sqrt(-a - b)*arctan(sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-a - b)/(a + b))*cos(f*x + e)^4 + ((8*a^2
 + 13*a*b + 5*b^2)*cos(f*x + e)^2 - 2*a^2 - 4*a*b - 2*b^2)*sqrt(-b*cos(f*x + e)^2 + a + b))/((a^3 + 3*a^2*b +
3*a*b^2 + b^3)*f*cos(f*x + e)^4)]

________________________________________________________________________________________

giac [B]  time = 3.14, size = 2580, normalized size = 19.25 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^5/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

-1/4*((8*a^2 + 8*a*b + 3*b^2)*arctan(-1/2*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*
a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a) - sqrt(a))/sqrt(-a - b))/((a^2 + 2*a*b + b^2)*sqrt(
-a - b)) - 2*(8*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 +
 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^7*a^2 + 8*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 +
2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^7*a*b + 3*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt
(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^7*b^2 - 56*(sqrt(a)*
tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)
^2 + a))^6*a^(5/2) - 56*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/
2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^6*a^(3/2)*b - 21*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*
x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^6*sqrt(a)*b^2 - 120*(sqrt(a)*tan(
1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 +
 a))^5*a^3 - 408*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2
+ 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^5*a^2*b - 269*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)
^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^5*a*b^2 - 44*(sqrt(a)*tan(1/2*f*x + 1/2*e)^
2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^5*b^3 + 136*
(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x
 + 1/2*e)^2 + a))^4*a^(7/2) + 40*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2
*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^4*a^(5/2)*b - 493*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*
tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^4*a^(3/2)*b^2 - 292*(sq
rt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x +
1/2*e)^2 + a))^4*sqrt(a)*b^3 + 344*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1
/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^3*a^4 + 1304*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan
(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^3*a^3*b + 1345*(sqrt(a)*ta
n(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2
 + a))^3*a^2*b^2 + 104*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2
*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^3*a*b^3 - 176*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x +
1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^3*b^4 + 24*(sqrt(a)*tan(1/2*f*x + 1/2
*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^2*a^(9/2
) + 600*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan
(1/2*f*x + 1/2*e)^2 + a))^2*a^(7/2)*b + 1865*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 +
 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^2*a^(5/2)*b^2 + 1880*(sqrt(a)*tan(1/2*f*x + 1/2
*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^2*a^(3/2
)*b^3 + 528*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b
*tan(1/2*f*x + 1/2*e)^2 + a))^2*sqrt(a)*b^4 - 232*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e
)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))*a^5 - 904*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2
- sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))*a^4*b - 1079*(
sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x
+ 1/2*e)^2 + a))*a^3*b^2 - 60*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*
x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))*a^2*b^3 + 560*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2
*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))*a*b^4 + 192*(sqrt(a)*tan(1/2*f
*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))*
b^5 - 104*a^(11/2) - 584*a^(9/2)*b - 1351*a^(7/2)*b^2 - 1588*a^(5/2)*b^3 - 912*a^(3/2)*b^4 - 192*sqrt(a)*b^5)/
(((sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f
*x + 1/2*e)^2 + a))^2 - 2*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x +
1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))*sqrt(a) - 3*a - 4*b)^4*(a^2 + 2*a*b + b^2)))/f

________________________________________________________________________________________

maple [B]  time = 3.43, size = 644, normalized size = 4.81 \[ \frac {\left (8 \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right ) a^{4}+24 \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right ) a^{3} b +27 \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right ) a^{2} b^{2}+14 \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right ) a \,b^{3}+3 \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right ) b^{4}+8 \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right ) a^{4}+24 \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right ) a^{3} b +27 \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right ) a^{2} b^{2}+14 \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right ) a \,b^{3}+3 \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right ) b^{4}\right ) \left (\cos ^{4}\left (f x +e \right )\right )-2 \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}\, \left (a +b \right )^{\frac {5}{2}} \left (8 a +5 b \right ) \left (\cos ^{2}\left (f x +e \right )\right )+4 \left (a +b \right )^{\frac {5}{2}} \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}\, a +4 \left (a +b \right )^{\frac {5}{2}} \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}\, b}{16 \left (a +b \right )^{\frac {5}{2}} \cos \left (f x +e \right )^{4} \left (a^{2}+2 a b +b^{2}\right ) f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^5/(a+b*sin(f*x+e)^2)^(1/2),x)

[Out]

1/16*((8*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*a^4+24*ln(2/(1+sin(f*x+e
))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*a^3*b+27*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*c
os(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*a^2*b^2+14*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*s
in(f*x+e)+a))*a*b^3+3*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*b^4+8*ln(2/
(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a^4+24*ln(2/(sin(f*x+e)-1)*((a+b)^(1/2
)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a^3*b+27*ln(2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(
1/2)+b*sin(f*x+e)+a))*a^2*b^2+14*ln(2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*
a*b^3+3*ln(2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*b^4)*cos(f*x+e)^4-2*(a+b-
b*cos(f*x+e)^2)^(1/2)*(a+b)^(5/2)*(8*a+5*b)*cos(f*x+e)^2+4*(a+b)^(5/2)*(a+b-b*cos(f*x+e)^2)^(1/2)*a+4*(a+b)^(5
/2)*(a+b-b*cos(f*x+e)^2)^(1/2)*b)/(a+b)^(5/2)/cos(f*x+e)^4/(a^2+2*a*b+b^2)/f

________________________________________________________________________________________

maxima [B]  time = 0.42, size = 248, normalized size = 1.85 \[ -\frac {\frac {{\left (8 \, a^{2} b^{3} + 8 \, a b^{4} + 3 \, b^{5}\right )} \log \left (\frac {\sqrt {b \sin \left (f x + e\right )^{2} + a} - \sqrt {a + b}}{\sqrt {b \sin \left (f x + e\right )^{2} + a} + \sqrt {a + b}}\right )}{{\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {a + b}} - \frac {2 \, {\left ({\left (8 \, a b^{4} + 5 \, b^{5}\right )} {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} - {\left (8 \, a^{2} b^{4} + 11 \, a b^{5} + 3 \, b^{6}\right )} \sqrt {b \sin \left (f x + e\right )^{2} + a}\right )}}{a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4} + {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{2} {\left (a^{2} + 2 \, a b + b^{2}\right )} - 2 \, {\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} {\left (b \sin \left (f x + e\right )^{2} + a\right )}}}{16 \, b^{3} f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^5/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

-1/16*((8*a^2*b^3 + 8*a*b^4 + 3*b^5)*log((sqrt(b*sin(f*x + e)^2 + a) - sqrt(a + b))/(sqrt(b*sin(f*x + e)^2 + a
) + sqrt(a + b)))/((a^2 + 2*a*b + b^2)*sqrt(a + b)) - 2*((8*a*b^4 + 5*b^5)*(b*sin(f*x + e)^2 + a)^(3/2) - (8*a
^2*b^4 + 11*a*b^5 + 3*b^6)*sqrt(b*sin(f*x + e)^2 + a))/(a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4 + (b*sin(f*x
 + e)^2 + a)^2*(a^2 + 2*a*b + b^2) - 2*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*(b*sin(f*x + e)^2 + a)))/(b^3*f)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\mathrm {tan}\left (e+f\,x\right )}^5}{\sqrt {b\,{\sin \left (e+f\,x\right )}^2+a}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e + f*x)^5/(a + b*sin(e + f*x)^2)^(1/2),x)

[Out]

int(tan(e + f*x)^5/(a + b*sin(e + f*x)^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan ^{5}{\left (e + f x \right )}}{\sqrt {a + b \sin ^{2}{\left (e + f x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**5/(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Integral(tan(e + f*x)**5/sqrt(a + b*sin(e + f*x)**2), x)

________________________________________________________________________________________